Abstract

To study the influence of the surface roughness and eutectic silicon segregation on the anodising of diecast Al-Si-Cu alloys, an AlSi11Cu2(Fe) alloy was high-pressure diecast and hard anodised. The microstructure and surface topography of milled and grit-blasted regions were investigated to analyse their effect on the growth of the anodic layer. The surface mechanical properties of the anodised surfaces were also studied. The results showed how high surface roughness and silicon segregation present in the grit-blasted surface hindered the thickening of the oxide layer. After anodising, the milled surface exhibited better mechanical properties than the grit-blasted one. The wear resistance was enhanced by a thicker anodic layer, while the scratch resistance was positively affected by a lower surface roughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.