Abstract

Bioactive glasses and ceramics enhance bone formation and bond directly to bone, and have emerged as promising substrates for bone tissue engineering applications. Bone bioactivity involves physicochemical surface reactions and cellular events, including cell attachment to adsorbed extracellular matrix proteins. The effects of fibronectin (Fn) adsorption and glass surface reaction stage on the attachment of osteoblast-like cells (ROS 17/2.8) to bioactive glass were analyzed. Bioactive glass disks were pretreated in a simulated physiologic solution to produce three reaction layers: unreacted glass (BG0), amorphous calcium phosphate (BG1d), and carbonated hydroxyapatite (BG7d). Synthetic hydroxyapatite (sHA) and nonreactive borosilicate glass (CG) were used as controls. A spinning disk device which applied a linear range of forces to attached cells while maintaining uniform chemical conditions at the interface was used to quantify cell adhesion. The number of adherent cells decreased in a sigmoidal fashion with applied force, and the resulting detachment profile provided measurements of adhesion strength. For the same amount of adsorbed Fn, cell adhesion was higher on surface-reacted bioactive glasses (BG1d and BG7d) than on BG0, CG, and sHA. For all substrates, cell attachment was primarily mediated by the RGD binding site of Fn, as demonstrated by blocking experiments with antibodies and RGD peptides. Cell adhesion strength increased linearly with adsorbed Fn surface density. Analysis of this fundamental relationship revealed that improved adhesion to reacted bioactive glasses resulted from enhanced cell receptor-Fn interactions, suggesting substrate-dependent conformational changes in the adsorbed Fn.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.