Abstract

The electric field enhancement due to the presence of cathode surface protrusion is investigated in atmospheric microdischarges with the goal of identifying the plasma sheath properties (such as cathode sheath thickness and electric field distortion). The electric field enhancement caused by surface protrusion is examined by adjusting the aspect ratio and the protrusion size. It is found that the cathode electric field enhancement depends strongly (weakly) on the aspect ratio (size) of the protrusion when it is much smaller than the discharge gap distance. In particular, the axial electric field in both vacuum and discharges becomes nonlinear with the protrusion on the cathode. The cathode sheath thicknesses obtained by two different methods are compared. With the same axial (or radial) protrusion dimension, increasing the aspect ratio will result in a significant decrease in the sheath thickness, whereas increasing the axial protrusion size with an unchanged aspect ratio will only lead to a slight decrease in the sheath thickness. The results contribute to predicting the relative plasma sheath properties from the geometrical parameter of the surface protrusion in atmospheric microdischarges.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.