Abstract

Cell adhesion is the basis of individual cell survival, division and motility. Hence, understanding the effects that the surface properties have on cell adhesion, proliferation and morphology are crucial. In particular, surface charge/potential has been identified as an important factor that affects cell behavior. However, how cells respond to incremental changes in surface potential remains unclear. By using binary self-assembled monolayer (SAM) modified Au surfaces that are similar in mechanical/chemical properties and provide a series of surface potentials, the effect of surface potential on the behavior of cells can be studied. In this work, the effect of surface potential on epithelial cells, including human embryonic kidney (HEK293T) and human hepatocellular carcinoma (HepG2), were examined. The results showed that the adhesion density of epithelial cells increased with increasing surface potential, which is similar to but varied more significantly compared with fibroblasts. The proliferation rate is found to be independent of surface potential in both cell types. Furthermore, epithelial cells show no morphological change with respect to surface potential, whereas the morphology of the fibroblasts clearly changed with the surface potential. These differences between the cell types were rationalized by considering the difference in extracellular matrix composition. Laminin-dominant epithelial cells showed higher adhesion density and less morphological change than did fibronectin-dominant fibroblasts because the more significant adsorption of positively charged laminin on the surface enhanced the adhesion of epithelial cells. In contrast, due to the dominance of negatively charged fibronectin that adsorbed weakly on the surface, fibroblasts had to change their morphology to fit the inhomogeneous fibronectin-adsorbed area.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call