Abstract

BackgroundDust accumulation on surfaces of critical instruments has been a major concern during lunar and Mars missions. Operation of instruments such as solar panels, chromatic calibration targets, as well as Extra Vehicular Activity (EVA) suits has been severely compromised in the past as a result of dust accumulation and adhesion. Wind storms with wind speeds of up to 70 mph have not been effective in removing significant amounts of the deposited dust. This is indeed an indication of the strength of the adhesion force(s) involved between the dust particles and the surface(s) that they have adhered to. Complications associated with dust accumulation are more severe for non-conducting surfaces and have been the focus of this work.MethodologyArgon plasma treatment was investigated as a mechanism for lowering dust accumulation on non-conducting polymeric surfaces. Polymers chosen for this study include a popular variety of silicones routinely used for space and terrestrial applications namely RTV 655, RTV 615, and Sylgard 184. Surface properties including wettability, surface potential, and surface charge density were compared before and after plasma treatment and under different storage conditions. Effect of ultraviolet radiation on RTV 655 was also investigated and compared with the effect of Ar plasma treatment.Conclusion/SignificanceGravimetric measurements proved Ar plasma treatment to be an effective method for eliminating dust adhesion to all three polymers after short periods of exposure. No physical damage was detected on any of the polymer surfaces after Ar plasma treatment. The surface potential of all three polymers remained zero up to three months post plasma exposure. Ultraviolet radiation however was not effective in reducing surface and caused damage and significant discoloration to RTV 655. Therefore, Ar plasma treatment can be an effective and non-destructive method for treating insulating polymeric surfaces in order to eliminate dust adhesion and accumulation.

Highlights

  • Dust devils on planet surfaces such as Mars have caused irreversible damage and numerous complications for systems on board missions [1,2,3,4,5,6]

  • The surface potential, contact angle, and dust adhesion properties of each batch was assessed prior to Ar plasma treatments in order to establish the baseline values for each polymer type

  • Samples from each polymer type were exposed to the Ar plasma chamber that is routinely used for cleaning of surfaces

Read more

Summary

Introduction

Dust devils on planet surfaces such as Mars have caused irreversible damage and numerous complications for systems on board missions [1,2,3,4,5,6]. Dust accumulation on surfaces of critical instruments has been a major concern during lunar and Mars missions. Operation of instruments such as solar panels, chromatic calibration targets, as well as Extra Vehicular Activity (EVA) suits has been severely compromised in the past as a result of dust accumulation and adhesion. Wind storms with wind speeds of up to 70 mph have not been effective in removing significant amounts of the deposited dust. This is an indication of the strength of the adhesion force(s) involved between the dust particles and the surface(s) that they have adhered to. Complications associated with dust accumulation are more severe for non-conducting surfaces and have been the focus of this work

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.