Abstract

The optical properties of silicon nanowire arrays (SiNWs) are closely related to surface morphology due to quantum effects and quantum confinement effects of the existing semiconductor nanocrystal. In order to explore the influence of the diameters and distribution density of nanowires on the light absorption in the visible to near infrared band, we report the highly efficient method of multiple replication of versatile homogeneous Au films from porous anodic aluminum oxide (AAO) membranes by ion sputtering as etching catalysts; the monocrystalline silicon is etched along the growth templates in a fixed proportion chemical solution to form homogeneous ordered arrays of different morphology and distributions on the surface. In this system, we demonstrate that the synthesized nanostructure arrays can be tuned to exhibit different optical characteristics in the test wavelength range by adjusting the structural parameters of AAO membranes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call