Abstract

Surface–molecule interactions play an essential role in loading capacity and release kinetics in nanostructured materials with high surface area-to-volume ratio. Engineering the surfaces via immobilizing functional moieties is, therefore, a versatile means to enhance the performance of drug delivery platforms with nanostructured components. Nanoporous gold (np-Au), with its high effective surface area, well-established gold-thiol chemistry, and tunable pore morphology, is an emerging material not only for drug delivery applications but also as a model system to study the influence of physicochemical surface properties on molecular loading capacity and release kinetics. Here, we functionalize np-Au with self-assembled monolayers (SAMs) of alkanethiols with varying functional groups and chain lengths and use fluorescein (a small-molecule drug surrogate) to provide insight into the relationship between surface properties and molecular release. The results revealed that electrostatic interactions dominate the...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call