Abstract

AbstractThe stoichiometric ratio for the synthesis components of hydrophobic new surface modifying macromolecules (nSMM) was altered systematically to produce three different types of nSMMs, which are called hereafter nSMM1, nSMM2, and nSMM3. The newly synthesized SMMs were characterized for fluorine content, average molecular weight, and glass transition temperature. The results showed that fluorine content decreased with increasing the ratio of α,ω‐aminopropyl poly(dimethyl siloxane) to 4,4′‐methylene bis(phenyl isocyanate). The synthesized nSMMs were blended into hydrophilic polyetherimide (PEI) host polymer to form porous hydrophobic/hydrophilic composite membranes by the phase inversion method. The prepared membranes were characterized by the contact angle measurement, X‐ray photoelectron spectroscopy, gas permeation test, measurement of liquid entry pressure of water, and scanning electron microscopy. Finally, these membranes were tested for desalination by direct contact membrane distillation and the results were compared with those of commercial polytetraflouroethylene membrane. The effects of the nSMM type on the membrane morphology were identified, which enabled us to link the membrane morphology to the membrane performance. It was found that the nSMM2/PEI membrane yielded the best performance among the tested membranes. In particular, it should be emphasized that the above membrane was superior to the commercial one. © 2009 American Institute of Chemical Engineers AIChE J, 2009

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.