Abstract

The effect of Surface Mechanical Attrition Treatment (SMAT) on torsional fatigue properties of a 7075 aluminum alloy was investigated. A number of fatigue samples were heat treated to increase the sensitivity of the material to SMAT. Compared with the as-machined (AM) samples, the fatigue lives of their SMATed counterparts (AM-SMAT) tested under torsional loading increased under high stress amplitudes, but decreased under low amplitudes. However, the fatigue lives of heated and SMATed samples (HT-SMAT) increased under all the investigated stress amplitudes, compared with those that were heat treated (HT). It was also revealed that the cracking mechanisms are different for the samples in different states, and they are dependent on the imposed stress levels. The results show that SMAT could have both beneficial and detrimental effects on the fatigue lives depending on the testing conditions. The roles played by various factors, including residual stresses, grain refinement, and surface roughness, were analyzed and discussed to interpret the results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call