Abstract

Profile evolution simulations during chemical vapor deposition based on a 2D continuum model reveal that the type of surface kinetics plays an important role in determining step coverage of films deposited in high aspect ratio trenches and vias. Linear surface kinetics, resulting from an adsorption rate limited process, is found to cause difficulty in bringing about conformal step coverage in deep narrow trenches without reducing the growth rate considerably. Under such condition, void-free filling cannot be achieved while maintaining a growth rate acceptable to integrated circuit (IC) manufacturing. The numerical study also suggests that the high tendency of the precursor for chemical equilibrium on a surface, resulting in nonlinear kinetics by a surface reaction limited process, is crucial to achieve a uniform step coverage as typically observed in SiO2 deposition from tetraethylorthosilicate (TEOS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.