Abstract

In this work, the early-stage corrosion of a carbon steel with various surface roughness, which was created by different levels of surface finishing treatment, was characterized by an atomic force microscope and electrochemical measurements. It is found that the resulting surface roughness is at nano-meter scale. As the surface roughness increases, the corrosion activity of the steel is increased. The early-stage corrosion of the steel is featured with two stages of dissolution. While the first stage involves a rapid dissolution and increasing surface roughness of the steel, stage two is in an equilibrium state to have an approximately constant corrosion rate and surface roughness. Generally, the corrosion rate of the steel decreases when the surface finish of the specimen becomes finer. Local preferential corrosion occurs at surface irregularities, resulting in the deepening and widening of the features such as scratches with time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call