Abstract

It is known that the static contact angle reflecting the “contact area” between liquid and solid is insufficient to represent the dynamic wettability of a solid surface, and another parameter called the sliding angle is needed to describe the relative easiness of liquid moving on a solid surface. However, sliding angle has been largely neglected in the previous studies for proton exchange membrane fuel cell (PEMFC). In this study, three-dimensional multiphase simulations are carried out for a PEMFC with single straight flow channels considering both the static contact angles and sliding angles of gas diffusion layer (GDL) and catalyst layer (CL). The results show that the liquid water volume fraction in cathode CL (CCL) and GDL (CGDL) can be increased by several times when the sliding angle is increased while the static contact angle is kept constant. This could have significant implication on the water management strategy due to the considerable changes in the water transport and removal processes. Since GDL is much thicker than CL, changing the surface dynamic wettability of GDL has more significant effect on liquid water transport than changing the surface dynamic wettability of CL.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call