Abstract
Arc floating in surface flashover can be controlled by reducing the interfacial charge-transfer resistance of ceramics. However, thus far, only a few studies have been conducted on methods of treating ceramic surfaces directly to reduce the interfacial charge-transfer resistance. Herein, we explore the flash sintering behavior of a ceramic surface (3 mol% yttria-stabilized zirconia (3YSZ)) onto which loose metal (iron) powder was spread prior to flash sintering at room temperature (25 °C). The iron powder acts as a conductive phase that accelerates the start of flash sintering while also doping the ceramic phase during the sintering process. Notably, the iron powder substantially reduces the transition time from the arc stage to the flash stage from 13.50 to 8.22 s. The surface temperature (~1600 °C) of the ceramic substrate is sufficiently high to melt the iron powder. The molten metal then reacts with the ceramic surface, causing iron ions to substitute Zr4+ ions and promoting rapid densification. The YSZ grains in the metal-infiltrated area grow exceptionally fast. The results demonstrate that spreading metal powder onto a ceramic surface prior to flash sintering can enable the metal to enter the ceramic pores, which will be of significance in developing and enhancing ceramic-metal powder processing techniques.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.