Abstract

The results of ultra-high vacuum low-temperature scanning-tunneling microscopy (STM) and spectroscopy (STS) of atomically clean (111) surface of the topological insulator Bi$_2$Se$_3$ are presented. We observed several types of new subsurface defects whose location and charge correspond to p-type conduction of grown crystals. The sign of the thermoelectric effect also indicates p-type conduction. STM and STS measurements demonstrate that the chemical potential is always located inside the bulk band gap. We also observed changes in the local density of states in the vicinity of the quintuple layer steps at the studied surface. This changes correspond either to the shift of the Dirac cone position or to the shift of the chemical potential near the step edge.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.