Abstract

The flatness of a silicon carbide wafer in terms of bow and warp is the result of the combination of factors both material and process related. Sub-surface damage (SSD) from the wafering process steps can be considered as a thin film under compressive stress on the wafer surface. SSD is generally decreased with each subsequent processing step after the multiwire saw. Single-sided process steps can produce very different levels of SSD on opposing wafer surfaces, leading to high bow and warp values. The present study investigates the effects of SSD on wafer flatness at various process steps as well as methods to minimize shape effects due to SSD during and after processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.