Abstract

The transient critical heat fluxes, CHFs, on 1.2-mm horizontal cylinders with mirror finished surface (MS) and Emery-3 finished rough one (RS) in a pool of water due to exponentially increasing heat inputs, Q 0e t/τ , with the periods, τ, ranged from 20 s down to 2 ms at pressures ranging from atmospheric up to 2 MPa for the subcoolings ranging from 0 to 80 K were measured. A heat input with the period of 20 s corresponds to quasi-steadily increasing one. The obtained data compared with the corresponding data for a cylinder with commercial surface (CS) which were already published in other papers. The trend of CHFs for the periods was generally as follows: the CHF first increases with a decrease in period up to a certain maximum CHF, then it decreases down to a minimum CHF and finally again increases with a decrease in period; namely the CHFs for the periods are separated into the first, second and third groups for longer, shorter and intermediate periods, respectively. The three groups of the CHFs for the periods tested were clearly observed for the cylinders with MS and RS, though the CHFs values for the shorter periods belonging to the second group were not observed for the cylinder with CS except those for the saturation condition at around atmospheric pressure, and those for high subcoolings at higher pressures. At the CHFs belonging to the second group the direct or semi-direct transition clearly occurs from transient conduction regime to film boiling without or with the vapor bubbles for a while with instantaneous increasing of heat flux for both cylinders of MS and RS. It was assumed that the transitions at the CHFs occur due to the explosive-like heterogeneous spontaneous nucleation (HSN) in originally flooded cavities similar to the assumption for the cylinder with CS previously published. It should be noted that as a typical example the minimum CHFs for the periods of 10 ms on the MS and RS cylinders at the pressure of 1 MPa for the subcooling of 40 K were ≈40% of the corresponding steady-state CHF. It was observed that the trends of CHFs for the periods belonging to the second and third groups are significantly affected by the cylinder surface conditions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call