Abstract

Basalt fiber reinforced polymer (BFRP) bars are used in reinforced concrete structures as an alternative to conventional mild steel bars due to their excellent strength and durability properties. The bond of BFRP bars with concrete is a critical design criterion for both flexural strength and crack control. In this paper, the effect of two surface conditions (primary sand coating and secondary sand coating) on the bond of BFRP bars is evaluated experimentally in three investigations: first, twelve pull-out specimens (six specimens for each surface condition) are tested to determine the bond strength; second, eleven beams (three beams with primary sand coated BFRP bars, three beams with secondary sand coated BFRP bars, three beams with bundled BFRP bars, and two beams with mild steel bars) are tested to determine the bond-dependent coefficient (kb) of different surface conditions compared to that of deformed steel bars; third, eleven beams are tested in flexure to determine the ultimate flexural strength and failure modes of beams with different surface conditions and reinforcement ratios. It was observed that the surface condition of BFRP bars has significant effect on bond strength, kb, and flexural strength. Test results are compared to those predicted using ACI 440-15 and ISIS 2007, which found to be conservative.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.