Abstract

Boiling heat transfer on treated silicon surfaces was studied. Experiments were conducted to investigate the effects of submicron-scale roughness on the boiling heat transfer at a subcooled condition in FC-72 at the ambient pressure. Two-type of treated silicon surfaces were prepared for boiling surfaces using anodisation with HF (hydrofluoric acid) based electrolyte and DMF (dimethylforamide) based one. The back side of the treated surface was glued to the back side of the other silicon chip on which thin film heaters and thin film temperature sensors were fabricated using conventional MUPs processes with doped polysilicon. The treated chips with submicron-scale roughness which provide many possible nucleation sites showed considerable enhancement in the nucleate boiling heat transfer coefficients compared to the untreated silicon surface. Further, the critical heat flux (CHF) of the treated surfaces increase linearly to the increase in the effective area for boiling.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.