Abstract
The injection of bacteria in the subsurface has been identified as a potential method for in situ cleanup of contaminated aquifers. For high bacterial loadings, the presence of previously deposited bacteria can result in decreased deposition rates—a phenomenon known as blocking. Miscible displacement experiments were performed on short sand columns (∼5 cm) to determine how bacterial deposition on positively charged metal-oxyhydroxide-coated sands is affected by the presence of previously deposited bacteria. Approximately 8 pore volumes of a radiolabeled bacterial suspension at a concentration of ∼1×10 9 cells ml −1 were introduced into the columns followed by a 2-pore-volume flush of cell-free buffer. It was found that the presence of Al- and Fe-coated sand increased both deposition rates and maximum fractional surface coverage of bacteria on the sediment surfaces. The effect of grain size on maximum bacterial retention capacity, however, was not significant. Decreasing ionic strength from 10 −1 to 10 −2 M KCl resulted in noticeable decreases in sticking efficiency ( α) and maximum surface coverage ( θ max) for clean silica sand—results consistent with DLVO theory. In columns containing positively charged Al- and Fe-coated sands, however, changes in α and θ max due to decreasing ionic strength were minimal. These findings demonstrate the importance of geochemical controls on the maximum bacterial retention capacity of sands.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.