Abstract
The degradation of Orange G, a monoazo dye, in aqueous solutions was investigated using as-synthesized and stored Fe-Ni bimetallic nanoparticles. Batch experiments with a nanocatalyst loading of 3 g/L showed complete dye degradation (150 mg/L) after 10 min of reaction time. HPLC-MS analysis of the degradation products showed that as-synthesized nanoparticles reductively cleaved the azo linkage to produce aniline as the major degradation product. However, 1-year-stored nanoparticles showed an oxidative degradation of Orange G through a hydroxyl-radical induced coupling of parent and/or product molecules. XPS analysis in corroboration with HPLC-MS data showed that the surface chemistry between Fe and Ni in as-synthesized and stored nanoparticles play a crucial role in directing the mode of degradation. Reductive dye degradation using as-synthesized nanoparticles proceeded through hydride transfer from nickel, whereas formation of a Fe2+ -Ni(0) galvanic cell in stored nanoparticles generated hydroxyl radicals from water in a nonFenton type reaction. The latter were responsible for the generation of radical centers on the dye molecule, which led to a coupling-mediated oxidative degradation of Orange G. The generation of hydroxyl radicals is further substantiated with radical quenching experiments using ascorbic acid indicating that stored nanoparticles degrade Orange G through a predominantly oxidative mechanism. HPLC-MS and XPS analysis of dye degradation using as-synthesized nanoparticles exposed to air and water confirmed that the reductive or oxidative degradation capability of Fe-Ni nanoparticles is decided by the time and type of catalyst aging process.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.