Abstract

The effects of surface characteristics on the axial fatigue properties and wear resistance of the GBIH-nitrided titanium alloy were investigated to improve the fatigue strength and wear resistance of Ti-6Al-4V alloy rapidly nitrided by induction-heating in a nitrogen atmosphere with blowing nitrogen gas (GBIH-nitriding). The fatigue strength of the GBIH-nitrided Ti-6Al-4V alloy was lower than that of the mirror-polished specimen owing to the formation of a brittle nitrogen compound layer and grain coarsening. Fatigue tests using specimens prepared by combining GBIH-nitriding and particle collision treatments revealed that the formation of nitrogen diffusion layers at the outermost surface and the generation of compressive residual stress without forming surface asperities increased the fatigue strength of the GBIH-nitrided Ti-6Al-4V alloy. Moreover, the formation of a nitrided layer and suppression of surface asperities effectively improved the wear resistance of the Ti-6Al-4V alloy. Therefore, formation of a nitrogen diffusion layer and the introduction of compressive residual stress without grain coarsening, a compound layer, and surface asperities increased the fatigue strength and wear resistance of the GBIH-nitrided alloy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.