Abstract
Acetylated chitin nanocrystals (ChNCs) were used as stabilizer in this work to prepare sunflower seed oil-in-water emulsions for the morphological and rheological studies. The results revealed that the acetylation with moderate degree of substitution (0.38) reduced hydrophilicity and increased surface charge level of rod-like ChNCs, and as a result, significantly improved the emulsifying ability of ChNCs. At the same oil/water ratio and particle loading, the emulsions stabilized with the acetylated ChNCs had far smaller droplet size (∼3 μm) as compared to the emulsions stabilized with the pristine ChNCs (5–7 μm). The increased droplets numbers and improved surface coating level resulted in the enhanced viscous resistance and yield stress level, which improved the physical stability of the acetylated ChNC-stabilized emulsions as a result. In addition, the droplet clusters easily formed in this system, contributing to weak strain overshoot and decreased large-deformation sensitivity during dynamic shear flow. Therefore, the acetylated ChNC-stabilized system showed enhanced transient stress overshoot during startup flow and weakened thixotropy during cyclic ramp shear flow as compared to the pristine ChNC-stabilized system. The relationships between surface acetylation of ChNCs and flow behavior of emulsions were then established, which provide valuable information on the modulation of the ChNC-stabilized Pickering emulsions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.