Abstract

Single and cyclic ablations under oxyacetylene torch with 2380±10%kW/m2 heat flux were performed to evaluate the effect of ablation products on the ablation resistance of carbon/carbon – silicon carbide (C/C–SiC) composites separately. As a result of the accumulation of noncrystalline SiO2 enwrapped SiC, ablation resistance of prepared composites was enhanced with time prolonging under single ablation while it was improved more significantly under cyclic ablation. The ablation products played several key roles during ablation: decreasing surface temperature, acting a barrier to oxidizing species attack and conglutinating defective ablated carbon fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.