Abstract

Enzymatic biofuel cells have many great usages as a small power source for medical and environmental applications. In this paper, we employed carboxylated multiwall carbon nanotube- (1-ethyl-3-methylimidazolium bis (trifluoromethyl sulfonyl) imide) ionic liquid nanocomposite on two different electrodes (glassy carbon and carbon felt) for immobilizing alcohol dehydrogenase. The properties of the two types of electrodes were characterized by cyclic voltammetry analysis. Polarization analysis and field emission scanning electron microscopy were used to show differences in the nanobiocomposite immobilization on two electrodes. Compared to glassy carbon, carbon felt achieved much more gains in electrochemical activity and power by catalyst coating. Power density of 10.027μWcm−2, has been achieved by carbon felt, but glassy carbon showed 1.7 μWcm−2 respectively.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.