Abstract

The effect of the supply of metabolizable protein (MP) on protein metabolism across the splanchnic tissues was determined in six catheterized lactating Holstein cows. In a crossover design, two isonitrogenous (16.3% CP) diets balanced to provide a low (Lo-MP) or high (Hi-MP) supply of MP were fed over 35-d periods. After 24 d of feeding, N balance was determined over a 6-d period. On d 33, [13C] sodium bicarbonate was infused into one jugular vein for 6h, and hourly breath samples were collected. On d 34 or 35, L[1-13C] leucine was infused into one jugular vein, and between 2 to 6h of infusion, breath and blood samples were taken hourly from the portal and hepatic veins and an artery. Isotopic enrichments of plasma leucine, 4-methyl-2-oxopentanoate, and expired CO2 were determined for calculation of leucine kinetics. Net leucine absorption was greater, either on a direct basis (leucine transfer only) or corrected for portal-drained viscera metabolism to 4-methyl-2-oxopentanoate and CO2 for the Hi-MP diet. There were no effects of diet on hepatic net flux of leucine across the liver, and, thus, more leucine was available to peripheral tissues with the Hi-MP diet. Combined with an increment in portal absorption of most of essential AA, this led to increased milk protein output, although it only represented 16% of the additional available leucine. Whole body leucine oxidation was also greater for the Hi-MP diet, as was leucine used for protein synthesis. Despite these changes, MP supply did not affect irreversible loss rate of leucine by portal-drained viscera and the liver; these averaged 35 and 20% of whole body irreversible loss rate, respectively. These ratios confirm the high metabolic activity of splanchnic tissues in lactating dairy cows, which are even greater than previously reported in growing ruminants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.