Abstract
Current groundwater treatment facilities, mostly relying on aeration-filtration configurations, aim at the removal of iron (Fe), ammonia (NH4+) and manganese (Mn). However, recently water companies expressed the ambition to also reduce arsenic (As) concentrations in these rapid sand filters. The aim of this study was to investigate the effect of the Fe oxidation state entering a biological filter bed on As removal. By varying supernatant water level, either Fe(II) or Fe(III) in the form of hydrous ferric oxides (HFO) could be stimulated to enter the filter bed at alkaline groundwater pH (7.6). The experimental pilot column filters showed that once the As(III) oxidation stabilised in the top layer of the filter sand, As removal reached its maximum (±75% at 120 cm supernatant level and 1.5 m/h filtration velocity). The increase in supernatant level from 5 to 120 cm resulted in additional HFO production prior to rapid filtration (1.5, 5 and 10 m/h), i.e. homogeneous Fe(II) oxidation and flocculation, and subsequently, HFO ending up deeper into the filter bed (120 cm filter depth). At a low supernatant water level of 5 cm, Fe(II) oxidised heterogeneously and was removed within the top 20 cm of the filter bed. Consequently, filters with high supernatant levels removed As to lower levels (by 20%) than in filters with low supernatant water levels. The benefits of Fe(II) oxidation prior to filtration for As removal was confirmed by comparing Fe(III) to Fe(II) additions in the supernatant water or in the filter bed. Overall it is concluded that in biological groundwater filters, the combination of a higher supernatant level and/or Fe(III) addition with biological As(III) oxidation in the top of the filter bed promotes As removal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.