Abstract

Surfactant-alternating-gas (SAG) is a preferred method of foam injection, which is a promising means of enhanced oil recovery. Liquid injectivity in a SAG process is commonly problematic. Our previous studies suggest that the liquid injectivity can be better than expected due to the existence of a collapsed-foam region formed during the gas-injection period ahead of the liquid-injection period. A single superficial velocity was used in those studies to examine the flow behavior during gas- and liquid-injection periods, separately. However, in radial flow from an injection well, superficial velocity decreases with distance from the injection well. Understanding the effect of superficial velocity on gas and liquid injectivities is important, but remains unexplored. In this study, we first examine gas injection at different superficial velocities following foam injection. We then study the effect of liquid superficial velocity on the liquid injectivity following a similar volume of gas injection. Our results show that during a prolonged period of gas injection following foam, the propagation velocity and the total mobility of the collapsed-foam bank are not significantly affected by the gas superficial velocity. During liquid injection after a period of gas injection, the dimensionless propagation velocities and the total mobilities of the forced-imbibition bank and the gas-dissolution bank follow a power-law dependence on the liquid superficial velocity. Liquid fingering through the weakened-foam region shows strongly shear-thinning behavior. It is also observed from X-ray computer-tomography experiments that the liquid fingers are wider if the liquid superficial velocity is greater. The impact of the shear-thinning behavior on the estimation of liquid injectivity in a field application is the subject of a companion paper.

Highlights

  • Foam is a well-known method for enhanced oil recovery, due to its capability for improving gas sweep efficiency [1,2,3]

  • Several studies have been performed for liquid injectivity directly after steadystate foam injection [9,10,11,12,13,14,15,16]

  • We examined liquid injectivity after a period of gas injection, as in a SAG process [16]

Read more

Summary

Introduction

Foam is a well-known method for enhanced oil recovery, due to its capability for improving gas sweep efficiency [1,2,3]. There are two main foam-injection strategies: co-injection of gas and surfactant solution, and injecting gas and surfactant solution alternatively. Surfactantalternating-gas (SAG) injection [4,5] is a favored method for foam injection into a formation because of the excellent gas injectivity and the reduced risk of facility-corrosion issues [6]. A SAG process often suffers from poor liquid injectivity. Several studies have been performed for liquid injectivity directly after steadystate foam injection [9,10,11,12,13,14,15,16]. Liquid injectivity following full-strength foam is very poor

Objectives
Methods
Results
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call