Abstract
AbstractAlloys based on near-equiatomic NiTi are capable of thermoelastic martensite transformations which give rise to shape memory and superelasticity (pseudoplasticity) effects. In particular, at temperatures above Ms and Af but below Md, NiTi alloys can deform by mechanisms of stressinduced martensite transformation and may display large anelastic strains which involve little or no deformation by slip. Under these conditions, the strain-controlled fatigue resistance of NiTi alloys may be exceptionally high [1]. In contrast, fcc metals like copper will, during strain controlled fatigue, eventuate severe plastic strain localization in the form of persistent slip bands (PSBs), whose behavior at free surfaces is intimately associated with fatigue crack initiation [2]. It is well known that fatigue crack initiation in fcc metals can be delayed by modifying surfacebreaking PSB structure or environment [3,4]. However, any attempt to strengthen the surface region in order to impede surface expression of persistent slip bands must contend with the large subsurface strain localizations enforced by the PSBs, which subject the film to strain cycling at roughly the characteristic PSB shear strain amplitude. Thermoelastic nickel-titanium alloys, capable of pseudoplastic straining, may be uniquely suited to the role of surface protection in situations where fatigue crack initiation is associated with PSB interaction with the external environment. In the present work, thin surface microalloys of NiTi, produced by ion sputtering, have been applied to polycrystalline copper fatigue specimens that were subsequently subjected to both monotonic loading, and fatigue under plastic strain control to produce mature PSB structures in the bulk material. Optical and scanning electron microscopy studies are described which assess the effect of the NiTi surface microalloy on the behavior of PSBs in the near surface region, and the attendant effect of the films on surface behavior of persistent slip bands. Although the results are incomplete with respect to the effects of the film on fatigue crack initiation, it has been shown for the first time that martensite transformation can be stress-induced (at temperatures above Ms) in a thin NiTi film on a plastically deforming substrate. This finding augurs well for the potential of such films to effectively suppress slip band penetration during low cycle fatigue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.