Abstract

AbstractInjection molding products made of aluminum flakes and polymer blends exhibit a distinctive esthetic effect. However, during the filling process, the melt flows in different directions converge and collide, resulting in the flop effect of the aluminum flake and consequent weld line formation. Herein, microcellular injection molding (MIM) was employed to fabricate polypropylene/aluminum flakes (PP/Al) composite foamed parts with distinct weld lines using supercritical nitrogen (scN2) as the physical blowing agent. The scN2 content has a significant effect on cell diameter and cell density. When the scN2 content was 0.6%, the weld line width of the foamed part was 13.03 μm, while it was 30.41 μm for the solid counterpart due to the expansion and rupture of cells in the flow front during filling. Moreover, the orientation of Al flakes was mostly along the flow direction for the foamed parts, while it was generally aligned perpendicular to the flow direction for solid parts in the weld line region. In addition, the flexural modulus of foamed parts was increased by 29% compared with the solid parts, although the tensile strength was reduced by 18% due to the alignment of Al flakes and the stress concentration on the cell walls. Therefore, this work provides insight into the improvement of flexural property and the mitigation of weld lines for injection molded composite parts using MIM.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.