Abstract

Mn/Ti catalysts prepared through impregnation of manganese acetate and a manganese nitrate precursor via the chemical vapor condensation (CVC) method were investigated in this study to assess NH3-selective catalytic reduction (SCR) activity. Manganese (Mn) loaded on a synthesized TiO2 catalyst showed good low-temperature NO reduction activity and better resistance to sulfur poisoning in presence of SO2. Mn loaded on synthesized TiO2 prepared from manganese acetate precursor especially exhibited a high NO conversion of 98.4% at 150 °C. Moreover, it presented high NO conversions within the entire operating temperature window in comparison with other catalysts, which may be attributed to smaller particle size, scattered amorphous Mn over the catalyst surface, higher dispersion, and an abundant Mn2O3 phase. X-ray photoelectron spectroscopy (XPS) analysis of the spent catalyst following the SCR reaction in presence of SO2 verified that the formation of sulfated titanium and manganese sulfate was significantly ...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.