Abstract

Inhaled SO2 may cause damage by injuring upper airways. To what extent can SO2 also alter pulmonary macrophage function in the parenchyma and what is the impact of exercise? We studied the effect of SO2 on pulmonary macrophage endocytosis in resting and in exercising animals by measuring the rates of macrophage endocytosis in situ for 1 h of a test particle of insoluble radioactive colloidal gold (198Au), 1, 24, or 48 h after inhalation exposure to SO2. Resting hamsters exposed for 4 h to 50 ppm SO2 had no significant reduction in macrophage endocytosis compared with air-breathing control hamsters. However, if hamsters were exposed to the same concentration of SO2 while continuously running (40 min at 0.9 km/h), macrophage endocytosis was significantly reduced 1 h after exposure even though the exposure time was only one-sixth as long. Twenty-four hours later, the percentage of gold ingested by pulmonary macrophages remained significantly depressed. By 48 h, the rate had returned to control values. Exercise alone did not affect endocytosis. Hamsters exposed to 50 ppm SO2, with or without exercise, also showed significant reductions in the number of lavaged macrophages. This decrease was greatest and most persistent in the SO2 plus exercise group. These data indicate that even when animals are exposed to water-soluble gases, which are normally removed by the upper airways, exercise can potentiate damage to more peripheral components of the pulmonary defense system such as the macrophage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call