Abstract

Cadmium (Cd) contamination in paddy soils has aroused global concern. Sulfur modified biochar (BC) could combine the benefits of BC and S for Cd remediation. However, no information is available on the impact of sulfur modified biochar on Cd phytoavailability in paddy soils. In this study, a pot experiment was conducted to investigate the effect of sulfur modified biochar (S-BC) and sulfur and iron (Fe) modified biochar (S-Fe BC) on Cd mobility and Cd transfer in the soil-rice system. The application of S-BC and S-Fe BC effectively reduced pore water Cd in the rhizosphere and non-rhizosphere pore water throughout the rice growth stages. S-BC and S-Fe BC addition increased the total chlorophyll content, as well as the root, shoot and grain biomasses of rice. Furthermore, S-BC and S-Fe BC amendments greatly increase the formation of Fe plaque on rice root surface, thus decreasing Cd accumulation in different rice tissues. In particular, S-Fe BC supplementation significantly reduced the Cd concentration in rice grains to 0.018 mg kg−1 in Cd-contaminated soil, which was lower than the China National standard for food contamination limit (0.2 mg kg−1 Cd). Sequential extraction results showed that S-BC and S-Fe BC can promote the transfer of exchangeable Cd to Fe-Mn oxide, organic and residual bound forms which reduce Cd in paddy soils. Thus, the amendment of S-Fe BC to Cd-contaminated paddy soil is an effective strategy to decrease Cd accumulation in rice grains and thereby protect public health.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.