Abstract

Antibiotics are commonly used in livestock and poultry farming. Residual antibiotics in manure may lead to antibiotic pollution of soil, surface water, and groundwater through land application and run-off rainfall. The black soldier fly (BSF) Hermetia illucens is a good candidate for manure management. We evaluated the effect of sulfonamide pollution on the growth of H. illucens. Four treatments were considered with a sulfonamide content in the feed of 0 (control group), 0.1, 1, and 10 mg/kg. The control larvae were fed without sulfonamide. Survival and development status of the individuals were recorded daily. The weights of the fifth instar larvae, prepupae, and pupae were checked. Antioxidant enzyme activity was determined with the fifth instar larvae. The results showed that a low (0.1 and 1 mg/kg) concentration of sulfonamides had no effects on larval survival, pupation, and eclosion of BSFs. A high sulfonamide concentration of 10 mg/kg had a significant effect on the survival of larvae and pupae and on the body weight of larvae, prepupae and pupae. Peak of the cumulated pupation rate and eclosion rate in the sulfonamide treatment of 10 mg/kg was very low. Pupation and eclosion in this group peaked later than that of the control and low sulfonamide concentration treatment groups (0.1 mg/kg and 1 mg/kg). Larvae from the sulfonamides group showed lower antioxidase activities than that of the control. In sulfonamide groups, the activity of peroxidase and superoxide dismutase was reduced in a concentration-dependent manner. Sulfamonomethoxine, sulfamethoxazole, and sulfamethazine were not detected in the harvested prepupae. Only sulfadiazine was discovered in the sulfonamide treatments of 1 and 10 mg/kg. In conclusion, BSFs can tolerate certain concentrations of sulfonamide contamination.

Highlights

  • Antibiotics are widely used in livestock and poultry farming as feed additives for the prevention and treatment of infectious diseases or for improving feed efficiency and growth rate at a relatively low dose [9]

  • These contaminated feces might lead to secondary antibiotic pollution to soil, surface water and groundwater through land application and run-off rainfall [10,11,12]

  • When 20% of individuals reached the prepupal stage, no significant difference in larval survival rate was found between the treatment with low SA content (0.1 and 1 mg/kg) and the control

Read more

Summary

Introduction

Some studies have indicated that antibiotics in the soil can be absorbed and cumulated by crops, especially vegetables such as cucumbers, lettuce, radish and tomatoes, and enter into the food chain [10, 13]. These antibiotics eventually lead to the development of antibiotic resistance, which has resulted in the reduction of therapeutic potential against human and animal pathogens [14]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call