Abstract

The effect of the carbohydrates trehalose, glucose, and hydroxyethyl starch (HES) on the motional properties of the phosphate headgroup of freeze-dried dipalmitoylphosphatidylcholine (DPPC) liposomes was studied by means of 31P NMR, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). The results show that trehalose, which is a strong glass former ( T g = 115°C), elevates the onset of the lipid headgroup rotations and preserves some rotational mobility of the phosphate headgroups after cooling from the liquid-crystalline state. Glucose ( T g = 30°C), a very effective depressant of the phase transition temperature of freeze-dried DPPC, markedly elevates the initiation of the temperature of headgroup rotations. On the other hand, the monosaccharide does not preserve the headgroup disordering when cooled from the liquid-crystalline state. These effects are consistent with formation of hydrogen bonds between the OH groups of the sugar and the polar headgroups of DPPC. They show, however, that hydrogen bonding is not sufficient for preservation of the dynamic properties of freeze-dried DPPC. HES, although a very good glass former ( T g > 110°C), does not depress the phase transition temperature and affects only slightly the rotational properties of freeze-dried DPPC. This lack of effect of HES is associated with the absence of direct interactions with the lipid phosphates, as evidenced by the FTIR results. These data show that vitrification of the additive is not sufficient to affect the dynamic properties of dried DPPC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call