Abstract

Productivity of sugarcane (Saccharum spp.) relies upon sucrose production in leaves and movement to sinks. The feedback regulatory effect of sugar upon photosynthesis balances this process involving Phosphoenolpyruvate carboxylase (PEPCase) and Rubisco where greater understanding in this area may allow manipulation to achieve higher yields. Accumulation of sucrose in leaves and decreased photosynthesis are early symptoms of the condition called yellow canopy syndrome (YCS) in sugarcane, which presents as a system in which to study sucrose feedback regulation. This work investigates changes in gene expression and protein abundance which coincide with the sugar accumulation in the leaves of YCS symptomatic sugarcane. During the early-stage of sugar accumulation, the levels of the Photosystem II core protein D1, and PsbQ of the oxygen-evolving complex decreased significantly. Transcript levels of these proteins also decreased, suggesting both nuclear and chloroplast gene expression were affected early in sugar build-up of YCS development. Transcript level of primary carbon fixation reactions enzyme NADP malate dehydrogenase was especially downregulated. However, PEPCase, decarboxylation and re-fixation (Rubisco) enzymes were not negatively regulated at the transcript or protein abundance level. Phosphoenolpyruvate carboxykinase was upregulated in both gene expression and protein abundance. The Calvin cycle in the bundle sheath was sensitive through the CP12 protein. Two isoforms of CP12 were found, one of which showed downregulation which coincided with a decrease in CP12 protein. This suggests transcript and protein decrease of PEPCase and Rubisco may be secondary regulation points of the sugar feedback regulation process upon photosynthesis in sugarcane leaves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call