Abstract

1. To investigate the mechanism of the reversible inactivation of pig spleen phosphofructokinase by ATP, the effect of order of addition of reactants (substrates, effectors and enzyme solution) was studied by preincubating the enzyme before assay with various combinations of its substrates and effectors. 2. Preincubation of the enzyme with MgATP or ATP at pH7.0 before addition of fructose 6-phosphate caused a rapid and much greater inhibition of activity than that observed when the reaction (carried out at identical substrate concentrations) was initiated with enzyme. 3. The rapid inhibition caused by preincubation with ATP, together with the sigmoidal response to fructose 6-phosphate and activation by AMP, were all blocked by prior photo-oxidation of the enzyme with Methylene Blue, which selectively destroys the inhibitory binding site for ATP [Ahlfors & Mansour (1969) J. Biol. Chem.244, 1247-1251]. 4. Fructose 6-phosphate, but not Mg(2+), protected phosphofructokinase from inhibition during preincubation with ATP in a manner that was sigmoidally dependent on the fructose 6-phosphate concentration. 5. Mg(2+), by protecting the enzyme from the inhibitory effect of preincubation at low pH (7.0) and by preventing its activation during preincubation with fructose 6-phosphate, demonstrated both a weak activating effect in the absence of the other substrates and a stronger inhibitory effect in the presence of fructose 6-phosphate. 6. Positive effectors (K(+), NH(4) (+), AMP and aspartate) protected the enzyme from inhibition during preincubation with MgATP in proportion to their potency as activators, but citrate potentiated the ATP inhibition. P(i) significantly slowed the inactivation process without itself acting as a positive effector. 7. The non-linear dependence of the initial rate of the unmodified enzyme on protein concentration (associated with increased positive homotropic co-operativity to fructose 6-phosphate) was intensified by preincubation with ATP and abolished by photo-oxidation. 8. The results are interpreted in terms of an association-dissociation model which postulates that protonation, at low pH, of a photo-oxidation-sensitive inhibitory site for ATP allows more rapid dissociation of an active tetramer to an inactive dimeric species.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call