Abstract

Several effects due to the coupling of the translational motion of a gas phase atom (H), to the vibrations of a substrate [Cu(100)], are investigated here with time-dependent wave packet methods. Three different propagation techniques, namely, reduced-dimensionality but “exact” wave packet propagation, the time-dependent-self-consistent-field (TDSCF) method, and the “mean-field” (Ehrenfest) mixed quantum-classical-molecular-dynamics scheme (QCMD), are tested against each other and compared with classical trajectory results, and with rigid-surface calculations. Our key findings are: (1) The Cu(100) substrate is very “open” for impinging H atoms, leading to large subsurface and bulk absorption yields; (2) the H atoms can be “hot” for several picoseconds after hitting the surface before they finally settle down in adsorption or absorption sites; (3) while classical mechanics agrees reasonably well with the exact quantum calculation, the mixed quantum-classical and TDSCF approaches which both rely on a single-configuration ansatz for the total nuclear wave function, grossly underestimate the coupling between the H atom and the surrounding Cu atoms; (4) all (approximate) methods agree in the fact that by taking more substrate vibrations into account, the reflection probability diminishes while sticking increases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.