Abstract

We have investigated the radiation damage by MeV implantation of Si in Si and its evolution under thermal annealing. Si wafers were implanted with MeV Si at various substrate temperatures. Damages were characterized by Rutherford-backscattering (RBS) channeling and by transmission electron microscopy (TEM). Defect formation after post-implantation annealing is very sensitive to the substrate temperatures during implantation. When the substrate temperature was decreased to 200K, TEM revealed two distinct bands of damage after annealing: one around the mean projected ion range and another at half the projected range. Our study indicates that the formation of defects at half range results from the solid phase epitaxy growth of initial buried amorphous layers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.