Abstract

We report the effect of substrate temperature (25–300 °C) on the structural, optical and electrical properties of Cadmium Sulphide (CdS) thin films deposited onto glass substrate by Radio Frequency (RF) magnetron sputtering. The structural, morphological, optical and electrical properties of the films were characterized by X-ray diffraction (XRD), Field emission scanning electron microscopy (FE-SEM), UV–VIS-NIR spectroscopy and Hall Effect measurement respectively. The XRD studies showed that the films were polycrystalline with hexagonal wurtzite structure preferentially oriented along the (0 0 2) plane parallel to the substrate surface. The XRD data analysis further revealed the crystallite size of the nanocrystalline films i.e. 22–24 nm exhibiting the fact that crystallite size increased with increasing the substrate temperature. The FE-SEM images along with energy dispersive spectroscopy (EDS) studies confirmed the homogeneous, compact and pin-hole free surface morphology. The UV–VIS-NIR studies unveiled the optical transmittance in the range of 75–90% after 540 nm of the wavelength of light. The optical band gaps were found to be decreasing from 2.34 eV to 2.26 eV with increasing the substrate temperature. The films were characterized as n-type as evidenced by the Hall Effect measurement. The carrier mobility was found to be increasing gradually from 5.53 to 12.57 cm2/V·s by increasing the substrate temperature from room temperature to 300 °C due to the improvement of crystalline quality and grain size of the films. The results showed good optical and electrical properties of the films deposited at 300 °C which are suitable to use as window layer in thin film based solar cells.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.