Abstract
Abstract Electrocatalytically active titanium oxynitride (TiNO) thin films were fabricated on commercially available titanium metal plates using a pulsed laser deposition (PLD) method for energy storage applications. The elemental composition and nature of bonding were analyzed using x-ray photoelectron spectroscopy (XPS) to reveal the reacting species and active sites responsible for the enhanced electrochemical performance of the TiNO electrodes. Symmetric supercapacitor devices were fabricated using two TiNO working electrodes separated by an ion-transporting layer to analyze their real-time performance. The galvanostatic charge-discharge studies on the symmetric cell have indicated that TiNO films deposited on the polycrystalline titanium plates at lower temperatures are superior to TiNO films deposited at higher temperatures in terms of storage characteristics. For example, TiNO films deposited at 300°C exhibited the highest specific capacity of 69 mF/cm2 at 0.125 mA/cm2 with an energy density of 7.5 Wh/cm2. The performance of this supercapacitor (300°C TiNO) device is also found to be ∼ 22 % better compared to that of a 500°C TiNO supercapacitor with a capacitance retention ability of 90% after 1000 cycles. The difference in the electrochemical storage and capacitance properties is attributed to the reduced leaching away of oxygen from the TiNO films by the Ti plate at lower deposition temperatures, leading to higher oxygen content in the TiNO films and, consequently, a high redox activity at the electrode/electrolyte interface.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Electrochemical Energy Conversion and Storage
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.