Abstract

A simple and novel catalyst free (00l) oriented zinc oxide (ZnO) nano-structures were synthesized on quartz substrate by pulsed laser deposition (PLD). The effects of substrate temperature on structural and optical properties of these nanostructures were investigated using X-ray diffraction (XRD), atomic force microscopy (AFM), photoluminescence (PL) and spectroscopic ellipsometry. XRD showed that the ZnO nanostructures had c-axis oriented hexagonal wurtzite crystal structure. Crystallite sizes were found to increase as substrate temperature increases. An AFM measurement confirms the grain formation and increase in surface roughness at higher substrate temperature. Optical band gap of these ZnO nanostructures was calculated using transmittance spectra in UV–Vis region and found to decrease from 3.24 to 3.21 eV as substrate temperature is increased from 500 to 800 °C. PL spectra show that all the peaks in UV region around 389 nm; 3.18 eV. The decrease in band gap may be attributed to decrease in oxygen vacancies at higher substrate temperature and may be useful for different applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call