Abstract

Regenerative medicine treatments that combine the use of cells and materials may open new options for tissue/organ repair and regeneration. The microenvironment of mesenchymal stem cells (MSCs) strictly regulates their self-renewal and functions. In this study, when rat bone marrow derived MSCs (rBMSCs) and rat adipose tissue derived MSCs (rAMSCs) in passages 2-4 were cultured on different substrates, they presented the cellular functions to be dependent of substrate stiffness. The cells attached better on the softer substrate than on the stiffer one. The substrate stiffness had no significant influence on the proliferation of those cells. However, the substrate stiffness significantly promoted the osteogenic differentiation of the two kinds of stem cells. Furthermore, rBMSCs cultured on the same stiffness expressed more osteoblast-related markers than rAMSCs. In addition, combined biomaterials and biochemical reagents treatment yielded a stronger effect on osteogenic differentiation of MSCs than either treatment alone. These results have significant implications for further extending our capabilities in engineering functional tissue substitutes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.