Abstract

A three-dimensional model of particle splatting on rough surfaces has been developed for high-velocity oxyfuel (HVOF) sprayed polymer particles and related to experimentally observed polymer splats. Fluid flow and particle deformation were predicted using a volume of fluid (VoF) method using Flow-3D software. Splatting behavior and final splat shapes were simulated on a realistic rough surface, generated by optical interferometry of an actual grit-blasted steel surface. Predicted splat shapes were compared with scanning electron microscopy images of nylon 11 splats deposited onto grit-blasted steel substrates. Rough substrates led to the formation of fingers and other asymmetric three-dimensional instabilities that are seldom observed in simulations of polymer splatting on smooth substrates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.