Abstract

Aluminum nitride (AlN) films have been grown in pure N2 plasma using cathodic arc ion deposition process. The films were prepared at different substrate bias voltages and temperatures. The aim was to investigate their influence on the Al macro-particles, structural and optical properties of deposited films. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Scanning electron microscope (SEM) and Rutherford backscattering spectrometry (RBS) were employed to characterize AlN thin films. XRD patterns indicated the formation of polycrystalline (hexagonal) films with preferential orientation of (002), which is suppressed at higher substrate bias voltage. FTIR and Raman spectroscopic analysis were used to assess the nature of chemical bonding and vibrational phonon modes of AlN thin films respectively. FTIR spectra depicted a dominant peak around 850cm−1 corresponding to the longitudinal optical (LO) mode of vibration. A shift in this LO mode peak towards higher wavenumbers was observed with the increase of substrate bias voltage and temperature, showing the upsurge of nitrogen concentration in the deposited film. Raman spectra illustrated a peak at 650cm−1 corresponding to E2 (high) phonon mode depicting the c-axis oriented (perpendicular to substrate) AlN film. SEM analysis showed the AlN film deposited at higher substrate bias voltage contains fewer amounts of Al macro-particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call