Abstract

Protective multi-component thin films at the surface of cutting tools have been significantly developed to reduce wear and friction. The present work investigates the effect of substrate bias voltage on the structural-tribological relations of W-Ti-C-N thin films produced by HiPIMS and DCMS co-sputtering. Chemical analysis of the coatings is obtained and composite phase structure is revealed. Morphology of the coatings illustrates that defectless surfaces may be achieved. Topographical parameters are investigated by employing graphical software. Indentation, scratch and pin-on-disk tests (pin is AISI 52100 steel) are applied to study mechanical behaviors of the films. To produce a wear-resistant film, a median bias voltage (−60 V) and as a result, optimum content of tungsten concentration (19.2 at. %), grain size (42.8 nm) and average peak interval (188 nm) is required. Finally, a model based on the representative volume element is developed to show crack propagation and delamination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.