Abstract

The present work aims at a better and deeper insight into the forces that govern the intramolecular charge transfer (ICT) and photo injection processes in dyes for dye sensitized solar cells (DSSC). The geometry, electronic structure, electron density distribution, and absorption spectra, for a selected donor-[Formula: see text]-acceptor (D-[Formula: see text]-A) dye for DSSC were computed and analyzed at a high level of DFT theory. The coplanar geometry of the studied dye (D1) indicates a strong conjugation which facilitates ICT. NBO analyses reveal that this ICT amounts to 0.8e, which is localized on the acceptor and anchoring groups resulting in a marked total delocalization interaction energy. The origin of this stabilization is two-fold; first the [Formula: see text]-charge transfer (CT) interaction from donor to acceptor orbitals and the hyperconjugative interactions involving Rydberg states. The effect of fluorine substituents, in the [Formula: see text]-spacer, on the quantum efficiency of DSSCs was investigated. Gibb’s free energy values, redox potentials, excited state life time, non-linear optical properties (NLO) and driving forces for D1 and its fluorinated derivatives were computed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.