Abstract

In this study, 2-diglycidylether of benzotrifluoride (2-DGEBTF) and 4-diglycidylether of benzotrifluoride (4-DGEBTF) epoxy resins, which contained fluorine groups in the main chain, were synthesized. The resins were characterized by FTIR,1H NMR,13C NMR and19F NMR spectroscopy. The 2-DGEBTF and 4-DGEBTF epoxy resins were cured with triethylene tetramine (TETA), and the effect of the fluorine group on the synthesized epoxy resin on the cure behavior, thermal, and mechanical properties was investigated. The 2-DGEBTF/TETA system was more reactive than the 4-DGEBTF/TETA system, whereas the thermal stability factor i.e., the decomposition activation energy (E d ), of 4-DGEBTF/TETA was higher than that of 2-DGEBTF/TETA. These results can be explained by the decrease in cross-linking density and decomposition of the short side chains, resulting in the CF3 group at the para position. However, theK IC value of 4-DGEBTF/TETA was higher than that of 2-DGEBTF/TETA. This was attributed to the increase in flexibility in the epoxy backbone, resulting in a difference in steric hindrance and polarlizability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.