Abstract

Anthraquinone class of compounds possesses a broad spectrum of therapeutic applications. Cancer cell targeting ability, together with photogeneration of reactive oxygen species, renders anthraquinones an interesting class of photosensitizers for photodynamic therapy (PDT). Screening of newer compounds for better singlet oxygen generation is of current interest to improve the practical usability in PDT. In this study, we investigate the photodynamic activity of nine commercially available anthraquinones, using EPR spectroscopy and computational techniques, to identify the role of substituents on singlet oxygen yield. Three anthraquinone derivatives, 1,5-diaminoanthraquinone, 15-dihydroxyanthraquinone and 1,2,7-trihydroxyanthraquinone, showed highest singlet oxygen quantum yield (0.21, 0.18 and 0.15, respectively) relative to Rose Bengal. Time-dependent density functional theory calculations indicate the singlet oxygen quantum yield of anthraquinones inversely correlate well with the excited singlet-triplet (S1-T1) energy gap. Electron-donating substituents present at positions 1, 2 and 5 of anthraquinone seem to reduce the S1-T1 energy gap, facilitating inter-system crossing and the production of singlet oxygen. This would greatly aid in the design of newer anthraquinone-based photosensitizers. This study also highlights the suitability of 1,5-diaminoanthraquinone for PDT applications as demonstrated by invitro experiments of photoinduced DNA cleavage and photocytotoxicity in Dalton's lymphoma ascites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.