Abstract

Five novel zinc(II) and cadmium(II) β-oxodithioester complexes, [Zn(L1)2] (1), [Zn(L2)2]n (2), [Zn(L3)2]n (3) [Cd(L1)2]n (4), [Cd(L2)2]n (5), with β-oxodithioester ligands, where L1 = 3-(methylthio)-1-(thiophen-2-yl)-3-thioxoprop-1-en-1-olate, L2 = 3-(methylthio)-1-(pyridin-3-yl)-3-thioxoprop-1-en-1-olate, and L3 = 3-(methylthio)-1-(pyridin-4-yl)-3-thioxoprop-1-en-1-olate, were synthesized and characterized by elemental analysis, IR, UV-vis, and NMR spectroscopy (1H and 13C{1H}). The solid-state structures of all complexes were ascertained by single-crystal X-ray crystallography. The β-oxodithioester ligands are bonded to Zn(II)/Cd(II) metal ions in an O∧S and N chelating/chelating-bridging fashion leading to the formation of 1D (in 2-4) and 2D (in 5) coordination polymeric structures, but complex 1 was obtained as a discrete tetrahedral molecule. Complex 4 crystallizes in the C2 chiral space group and has been studied using circular dichroism (CD) spectroscopy. The multidimensional assemblies in these complexes are stabilized by many important noncovalent C-H···π (ZnOSC3, chelate), π···π, C-H···π, and H···H interactions. The catalytic activities of 1-5 in reactions involving C-C and C-O bond formation have been studied, and the results indicated that complex 3 can be efficiently utilized as a heterogeneous bifunctional catalyst for the Knoevenagel condensation and multicomponent reactions to develop biologically important organic molecules. The luminescent properties of complexes were also studied. Interestingly, zinc complexes 1-3 showed strong lumniscent emission in the solid state, whereas cadmium complexes 4 and 5 exhibited bright luminescent emission in the solution phase. The semiconducting behavior of the complexes was studied by solid-state diffuse reflectance spectra (DRS), which showed optical band gaps in the range of 2.49-2.62 eV.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call