Abstract
Waveguide losses in all-solid photonic bandgap fibre are studied numerically using both vectorial mode solver and vectorial beam propagation methods. Confinement loss, including material losses, is comprehensively evaluated for defect modes of hexagonal lattice photonic bandgap fibre. The excitation of the index-guiding modes at the bandgap edges leads to a narrowing of the transmission bands. Submicron deformations of the transverse structure of the fibre lead to a significant reduction in the width of the transmission bands, yet the minimum value of the losses within these bandgaps remains practically unchanged. Longitudinal variation of the fibre profile increases the effective losses by up to tens of dB/m.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.